3.3 Gramáticas Regulares

José de Jesús Lavalle Martínez

Benemérita Universidad Autónoma de Puebla Facultad de Ciencias de la Computación Lenguajes Formales y Autómatas CCOS 014

Contenido

- Contexto
- ② Gramáticas Regulares
- 3 Equivalencia entre Autómatas Finitos y Gramáticas Regulares
- 4 Ejercicios

Conceptos previos

• La base de nuestro trabajo se llama **alfabeto** (se denota mediante Σ) y es un conjunto finito de símbolos (denotados mediante a,b,c,0,1, por ejemplo).

Conceptos previos

- La base de nuestro trabajo se llama **alfabeto** (se denota mediante Σ) y es un conjunto finito de símbolos (denotados mediante a,b,c,0,1, por ejemplo).
- Al yuxtaponer símbolos del alfabeto formamos **palabras** (también llamadas **cadenas**) (denotadas mediante u, v, w, x, y, z, por ejemplo) de cualquier longitud, pero finitas.

• El conjunto infinito de todas las palabras finitas basadas en el alfabeto Σ lo denotamos mediante Σ^* .

- El conjunto infinito de todas las palabras finitas basadas en el alfabeto Σ lo denotamos mediante Σ^* .
- Así, un **lenguaje** L es un conjunto (finito o infinito) de palabras tomadas de Σ^* , en decir, $L \subseteq \Sigma^*$.

f O Decimos que un Lenguaje L es **regular** si es **reconocido** por un autómata finito.

- floor Decimos que un Lenguaje L es **regular** si es **reconocido** por un autómata finito.
- Sabemos que una expresión regular denota a un conjunto regular y que para todo conjunto regular existe una expresión regular que lo denota.

- lacktriangledown Decimos que un Lenguaje L es **regular** si es **reconocido** por un autómata finito.
- Sabemos que una expresión regular denota a un conjunto regular y que para todo conjunto regular existe una expresión regular que lo denota.
- Una tercera manera de tratar con los lenguajes regulares es mediante las Gramáticas Regulares.

Una gramática es una cuaterna G = (V, T, S, P) donde:

• V es un conjunto finito, a cada uno de sus elementos se le llama **símbolo no terminal** o **variable**, sus elementos se denotan mediante $S, A, B, C, \dots, V_0, V_1, \dots$

Una gramática es una cuaterna G = (V, T, S, P) donde:

- V es un conjunto finito, a cada uno de sus elementos se le llama **símbolo no terminal** o **variable**, sus elementos se denotan mediante $S, A, B, C, \dots, V_0, V_1, \dots$
- T es un conjunto finito disjunto de V, a cada uno de sus elementos se le llama **símbolo terminal**, sus elementos se denotan mediante $a, b, c, 0, 1, \cdots$.

Una gramática es una cuaterna G = (V, T, S, P) donde:

- V es un conjunto finito, a cada uno de sus elementos se le llama **símbolo no terminal** o **variable**, sus elementos se denotan mediante $S, A, B, C, \dots, V_0, V_1, \dots$
- T es un conjunto finito disjunto de V, a cada uno de sus elementos se le llama **símbolo terminal**, sus elementos se denotan mediante $a,b,c,0,1,\cdots$.
- $S \in V$ es el símbolo no terminal inicial o variable inicial.

Una gramática es una cuaterna G = (V, T, S, P) donde:

- V es un conjunto finito, a cada uno de sus elementos se le llama **símbolo no terminal** o **variable**, sus elementos se denotan mediante $S, A, B, C, \dots, V_0, V_1, \dots$
- T es un conjunto finito disjunto de V, a cada uno de sus elementos se le llama **símbolo terminal**, sus elementos se denotan mediante $a,b,c,0,1,\cdots$.
- $S \in V$ es el símbolo no terminal inicial o variable inicial.
- P es una relación finita entre V y $(V \cup T)^*$. A los miembros de la relación P se les llama producciones de la gramática, reglas de reescritura, producciones o reglas.

Notación para las producciones

• Si bien una regla es un par $(\alpha, \beta) \in P$, con $\alpha \in V$ y $\beta \in (V \cup T)^*$, se acostubra usar la notación $\alpha \to \beta$, se dice que α es la **parte** izquierda de la regla y que β es la **parte derecha** de la regla. También se dice que α produce β .

Notación para las producciones

- Si bien una regla es un par $(\alpha, \beta) \in P$, con $\alpha \in V$ y $\beta \in (V \cup T)^*$, se acostubra usar la notación $\alpha \to \beta$, se dice que α es la **parte** izquierda de la regla y que β es la **parte derecha** de la regla. También se dice que α produce β .
- Es usual listar, separadas por el carácter |, las partes derechas que tienen en común su parte izquierda, es decir, suponga que tiene las producciones $\alpha \to \beta_1, \alpha \to \beta_2, \cdots, \alpha \to \beta_n$, dichas reglas se escriben como $\alpha \to \beta_1 |\beta_2|, \cdots, |\beta_n|$ y se lee α produce β_1, β_2 hasta β_n .

Derivaciones

• Sea la cadena $u_1\alpha u_2$ con $u_1,u_2\in (V\cup T)^*$ y $\alpha\in V$, decimos que la palabra $u_1\alpha u_2$ deriva en un paso a a la palabra $u_1\beta u_2$, lo que se escribe $u_1\alpha u_2\Rightarrow u_1\beta u_2$, si existe $\alpha\to\beta\in P$ con $\alpha\in V$ y $\beta\in (V\cup T)^*$.

Derivaciones

- Sea la cadena $u_1\alpha u_2$ con $u_1,u_2\in (V\cup T)^*$ y $\alpha\in V$, decimos que la palabra $u_1\alpha u_2$ deriva en un paso a a la palabra $u_1\beta u_2$, lo que se escribe $u_1\alpha u_2\Rightarrow u_1\beta u_2$, si existe $\alpha\to\beta\in P$ con $\alpha\in V$ y $\beta\in (V\cup T)^*$.
- Note que \Rightarrow es una relación binaria entre cadenas en $(V \cup T)^*$, su cerradura reflexiva y transitiva la denotaremos mediante $\stackrel{*}{\Rightarrow}$. Si tenemos que $u \stackrel{*}{\Rightarrow} v$, decimos que la palabra u deriva en cero o más pasos a la palabra v.

Lenguaje generado por una gramática

El lenguaje **generado** por la gramática G=(V,T,S,P) es el conjunto

$$L(G) = \{ w \in T^* : S \stackrel{*}{\Rightarrow} w \},$$

es decir, todas las palabras que constan sólo de símbolos terminales que son derivables en uno o más pasos a partir de la variable inicial S.

En una derivación multipasos, se dice que todas las cadenas en $(V \cup T)^*$ derivadas de S, pero exceptuando a $w \in T^*$, están en **forma sentencial**. Dicho de otra manera, todas las cadenas derivadas de S a las que se les puede aplicar una producción.

Gramática Lineal Derecha y Gramática Lineal Izquierda

Hay diferentes tipos de gramáticas, la diferencia está dada por la forma que tienen sus producciones. El tipo más restrictivo (con respecto a la forma de sus producciones) es el que ahora nos ocupa y se define a continuación.

Gramática Lineal Derecha y Gramática Lineal Izquierda ...

Definición 1

Una gramática G=(V,T,S,P) se dice que es **lineal derecha** si todas sus producciones son de alguna de las siguientes dos formas

$$A \to xB$$

$$A \to x$$

donde $A, B \in V$ y $x \in T^*$.

Gramática Lineal Derecha y Gramática Lineal Izquierda ...

Definición 1

Una gramática G=(V,T,S,P) se dice que es **lineal derecha** si todas sus producciones son de alguna de las siguientes dos formas

$$A \to xB$$

$$A \to x$$

donde $A,B\in V$ y $x\in T^*.$ Una gramática se dice que es **lineal izquierda** si todas sus producciones son de alguna de las siguientes dos formas

$$A \to Bx$$

$$A \to x$$

Gramática Lineal Derecha y Gramática Lineal Izquierda ...

Definición 1

Una gramática G=(V,T,S,P) se dice que es **lineal derecha** si todas sus producciones son de alguna de las siguientes dos formas

$$A \to xB$$

$$A \to x$$

donde $A,B\in V$ y $x\in T^*.$ Una gramática se dice que es **lineal izquierda** si todas sus producciones son de alguna de las siguientes dos formas

$$A \to Bx$$

$$A \to x$$

Una gramática regular es una que es lineal derecha o lineal izquierda.

Ejemplo 2

$$S \to abS|a$$

Ejemplo 2

La gramática $G=(\{S\},\{a,b\},S,P)$ donde P está dado por las producciones

$$S \to abS|a$$

es lineal derecha.

Ejemplo 2

$$S \to abS|a$$

$$S \stackrel{1}{\Rightarrow} a$$

Ejemplo 2

$$S \to abS|a$$

$$S \stackrel{1}{\Rightarrow} a$$

$$S \stackrel{1}{\Rightarrow} abS \stackrel{2}{\Rightarrow} aba$$

Ejemplo 2

$$S \to abS|a$$

$$S \stackrel{1}{\Rightarrow} a$$

$$S \stackrel{1}{\Rightarrow} abS \stackrel{2}{\Rightarrow} aba$$

$$S \stackrel{1}{\Rightarrow} abS \stackrel{2}{\Rightarrow} ababS \stackrel{3}{\Rightarrow} abababS \stackrel{4}{\Rightarrow} \cdots \stackrel{i-1}{\Rightarrow} (ab)^{i-1}S \stackrel{i}{\Rightarrow} (ab)^{i-1}a$$

Ejemplo 2

$$S \to abS|a$$

$$S \stackrel{1}{\Rightarrow} a$$

$$S \stackrel{1}{\Rightarrow} abS \stackrel{2}{\Rightarrow} aba$$

$$S \stackrel{1}{\Rightarrow} abS \stackrel{2}{\Rightarrow} ababS \stackrel{3}{\Rightarrow} abababS \stackrel{4}{\Rightarrow} \cdots \stackrel{i-1}{\Rightarrow} (ab)^{i-1}S \stackrel{i}{\Rightarrow} (ab)^{i-1}a$$

$$L(G) = \{(ab)^n a : n \ge 0\}$$

Ejemplo 2

$$S \to abS|a$$

$$S \stackrel{1}{\Rightarrow} a$$

$$S \stackrel{1}{\Rightarrow} abS \stackrel{2}{\Rightarrow} aba$$

$$S \stackrel{1}{\Rightarrow} abS \stackrel{2}{\Rightarrow} ababS \stackrel{3}{\Rightarrow} abababS \stackrel{4}{\Rightarrow} \cdots \stackrel{i-1}{\Rightarrow} (ab)^{i-1}S \stackrel{i}{\Rightarrow} (ab)^{i-1}a$$

$$L(G) = \{(ab)^n a : n \ge 0\} \circ (ab)^* a$$

$$S \to abS|a$$

Por demostrar que $L(G)=\{(ab)^na:n\geq 0\}$, demostración por inducción sobre n.

$$S \to abS|a$$

Por demostrar que $L(G)=\{(ab)^na:n\geq 0\}$, demostración por inducción sobre n.

Demostración 3

 $\mbox{Hipótesis de inducción: } S \stackrel{i+1}{\Rightarrow} (ab)^i a = S \stackrel{i}{\Rightarrow} (ab)^i S \stackrel{1}{\Rightarrow} (ab)^i a.$

$$S \to abS|a$$

Por demostrar que $L(G)=\{(ab)^na:n\geq 0\}$, demostración por inducción sobre n.

Demostración 3

Hipótesis de inducción: $S \stackrel{i+1}{\Rightarrow} (ab)^i a = S \stackrel{i}{\Rightarrow} (ab)^i S \stackrel{1}{\Rightarrow} (ab)^i a$.

Caso base: n = 0 $S \stackrel{1}{\Rightarrow} a = (ab)^0 a$.

$$S \to abS|a$$

Por demostrar que $L(G)=\{(ab)^na:n\geq 0\}$, demostración por inducción sobre n.

Demostración 3

 $\text{Hipótesis de inducción: } S \overset{i+1}{\Rightarrow} (ab)^i a = S \overset{i}{\Rightarrow} (ab)^i S \overset{1}{\Rightarrow} (ab)^i a.$

Caso base: n = 0 $S \stackrel{1}{\Rightarrow} a = (ab)^0 a$.

Caso inductivo: n = i + 1 Por hipótesis de inducción:

$$S \stackrel{i}{\Rightarrow} (ab)^i S \stackrel{1}{\Rightarrow} (ab)^i abS = (ab)^{i+1} S \stackrel{1}{\Rightarrow} (ab)^{i+1} a.$$

$$S \to abS|a$$

Por demostrar que $L(G)=\{(ab)^na:n\geq 0\}$, demostración por inducción sobre n.

Demostración 3

Hipótesis de inducción: $S \stackrel{i+1}{\Rightarrow} (ab)^i a = S \stackrel{i}{\Rightarrow} (ab)^i S \stackrel{1}{\Rightarrow} (ab)^i a$.

Caso base: n = 0 $S \stackrel{1}{\Rightarrow} a = (ab)^0 a$.

Caso inductivo: n = i + 1 Por hipótesis de inducción:

$$S \stackrel{i}{\Rightarrow} (ab)^i S \stackrel{1}{\Rightarrow} (ab)^i abS = (ab)^{i+1} S \stackrel{1}{\Rightarrow} (ab)^{i+1} a.$$

Por lo tanto se cumple para todo $n \in \mathbb{N}$.

L(G) es un lenguaje regular l

Teorema 4

Si G=(V,T,S,P) una gramática lineal derecha, entonces L(G) es un lenguaje regular.

Demostración: Asuma que $V=\{V_0,V_1,\cdots\},S=V_0$ y que tenemos producciones de la forma $V_0\to v_1V_i,V_i\to v_2V_j,\cdots$ o de la forma $V_n\to v_l,\cdots$. Si $w\in L(G)$, entonces dada la forma de las producciones tenemos.

$$V_0 \Rightarrow v_1 V_i$$

$$\Rightarrow v_1 v_2 V_j$$

$$\stackrel{*}{\Rightarrow} v_1 v_2 \cdots v_k V_n$$

$$\Rightarrow v_1 v_2 \cdots v_k v_l = w.$$
(1)

L(G) es un lenguaje regular Π

El autómata M que construiremos reproducirá las derivaciones reconociendo cada una de las v's en (1).

El estado inicial del autómata se etiqueta como V_0 y a cada variable V_i le corresponde un estado no final etiquetado V_i .

Para cada producción de la forma

$$V_i \to a_1 a_2 \cdots a_m V_j$$

tenemos que definir δ de tal forma que

$$\delta^*(V_i, a_1 a_2 \cdots a_m) = V_j$$

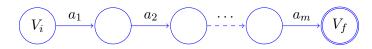
L(G) es un lenguaje regular III

Para cada producción de la forma

$$V_i \to a_1 a_2 \cdots a_m$$

tenemos que definir δ de tal forma que

$$\delta^*(V_i, a_1 a_2 \cdots a_m) = V_f$$



L(G) es un lenguaje regular IV

Si $w \in L(G)$, entonces se satisface (1) y por construcción en el NFA existe un camino de V_0 a V_i etiquetado v_1 , un camino de V_i a V_j etiquetado v_2 , etc. Por lo tanto

$$V_f \in \delta^*(V_0, w)$$

y w es aceptado por M.

Para ver que M sólo acepta las palabras generadas por G, note que para que el autómata acepte a w tiene que pasar a través de una secuencia de estados V_0, V_i, \cdots, V_f usando caminos con etiquetas v_1, v_2, \cdots . Por lo tanto, w debe tener la forma

$$w = v_1 v_2 \cdots v_k v_l$$

y en G se daría la derivación

$$V_0 \Rightarrow v_1 V_i \Rightarrow v_1 v_2 V_j \stackrel{*}{\Rightarrow} v_1 v_2 \cdots v_k V_n \Rightarrow v_1 v_2 \cdots v_k v_l = w$$

Así $w \in L(G)$ y el teorema queda demostrado.

←□ → ←□ → ← 厘 → ← 厘 →

$$V_0 \to aV_1,$$

 $V_1 \to abV_0|b.$

$$V_0 \to aV_1,$$

 $V_1 \to abV_0|b.$

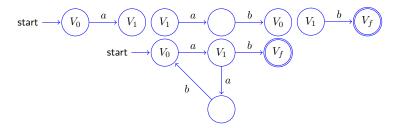
$$\mathsf{start} \longrightarrow \hspace{-0.5cm} \begin{array}{c} V_0 \\ \end{array} \longrightarrow \hspace{-0.5cm} \begin{array}{c} a \\ \end{array} \\ V_1 \\ \end{array}$$

$$V_0 \to aV_1,$$

 $V_1 \to abV_0|b.$

$$V_0 \to aV_1,$$

 $V_1 \to abV_0|b.$



Si L es regular entonces L=L(G) I

Teorema 5

Si L es un lenguaje regular sobre el alfabeto Σ , entonces existe una gramática lineal derecha $G=(V,\Sigma,S,P)$ tal que L=L(G).

Demostración: Sea $M=(Q,\Sigma,\delta,q_0,F)$ un AFD que acepta L. Asumimos que $Q=\{q_0,q_1,\cdots,q_n\}$ y $\Sigma=\{a_1,a_2,\cdots,a_m\}$. Construya la gramática lineal derecha $G=(V,\Sigma,S,P)$ con

$$V = \{q_0, q_1, \cdots, q_n\} \text{ y } S = q_0.$$

Para cada transición

$$\delta(q_i, a_j) = q_k$$

de M, ponemos en P la producción

$$q_i \to a_j q_k$$
.

Si L es regular entonces L = L(G) II

Para terminar, si $q_k \in F$, añada a P la producción

$$q_k \to \lambda$$
.

Primero demostremos que G así definida puede generar cualquier palabra de L. Considere que $w\in L$ tiene la forma

$$w = a_i a_j \cdots a_k a_l$$

Para que M acepte esta palabra debe hacer las siguientes transiciones

$$\delta(q_0, a_i) = q_p$$

$$\delta(q_p, a_j) = q_r$$

$$\vdots$$

$$\delta(q_s, a_k) = q_t$$

$$\delta(q_t, a_l) = q_f \in F$$

Si L es regular entonces L = L(G) III

Por construcción, la gramática tendrá una producción para cada una de estas transiciones. Por lo tanto, se pueden hacer las siguientes derivaciones con la gramática ${\cal G}$

$$q_0 \Rightarrow a_i q_p \Rightarrow a_i a_j q_r \stackrel{*}{\Rightarrow} a_i a_j \cdots a_k q_t$$

$$\Rightarrow a_i a_j \cdots a_k a_l q_f \Rightarrow a_i a_j \cdots a_k a_l$$
 (2)

por lo tanto $w \in L(G)$.

Para ver que G sólo genera las palabras de L, note que si $w \in L(G)$, entonces su derivación debe ser como en (2). Pero esto implica que

$$\delta^*(q_0, a_i a_j \cdots a_k a_l) = q_f,$$

con lo que se completa la prueba.

De AFN a GLD

Ejemplo 6

Construya una gramática lineal derecha que genere el lenguaje $\{aab^na:n\geq 0\}.$

El siguiente AFN reconoce el lenguaje $\{aab^na:n\geq 0\}$

De AFN a GLD

Ejemplo 6

Construya una gramática lineal derecha que genere el lenguaje $\{aab^na:n\geq 0\}.$

El siguiente AFN reconoce el lenguaje $\{aab^na: n \geq 0\}$

$$\begin{split} \delta(q_0,a) &= \{q_1\} & q_0 \rightarrow aq_1 \\ \delta(q_1,a) &= \{q_2\} & q_1 \rightarrow aq_2 \\ \delta(q_2,b) &= \{q_2\} & q_2 \rightarrow bq_2 \\ \delta(q_2,a) &= \{q_f\} & q_2 \rightarrow aq_f \\ q_f \in F & q_f \rightarrow \lambda \end{split}$$

Ejercicios I

Los ejercicios los deben enviar en pdf a jlavallenator@gmail.com, pueden usar cualquier herramienta (de preferencia LATEX), en el peor de los casos, si no tienen alternativa, lo hacen con papel y lapiz con letra legible y visible, lo escanean y me lo envían en pdf.

- ① Demuestre que el AFN propuesto en el ejemplo 6 reconoce el lenguaje $\{aab^na:n\geq 0\}.$
- 2 Construya un autómata finito que acepte el lenguaje generado por la gramática

$$S \to abA,$$

 $A \to baB,$
 $B \to aA|bb.$

Ejercicios II

 Construya un autómata finito que acepte el lenguaje generado por la gramática

$$S \to abS|A,$$

$$A \to baB,$$

$$B \to aA|bb.$$

- Construya una gramática lineal derecha para el lenguaje $L = \{a^n b^m : n \geq 3, m \geq 2\}.$
- **3** Construya una gramática lineal derecha para el lenguaje sobre $\Sigma = \{a, b\}$ que consiste de todas las cadenas con no más de dos a's.
- Muestre que para toda gramática lineal derecha que no genere λ existe una gramática lineal derecha cuyas producciones están restringidas a las siguientes dos formas

$$A \rightarrow aB \circ A \rightarrow a, A, B \in V, a \in T.$$